Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 114(2): 319-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35363583

RESUMO

Rust fungi are important plant pathogens and have been extensively studied on crops and other host plants worldwide. This study describes the heterecious life cycle of a rust fungus on Digitaria eriantha (finger grass) and the Solanum species S. lichtensteinii (large yellow bitter apple), S. campylacanthum (bitter apple), and S. melongena (eggplant) in South Africa. Following field observations, inoculation studies involving telial isolates collected from Digitaria plants produced spermogonia and aecia on S. lichtensteinii, S. campylacanthum, and S. melongena. Likewise, inoculation of finger grass with aeciospores collected from the aforementioned Solanum species produced uredinia on D. eriantha. Pennisetum glaucum (pearl millet varieties Milkstar and Okashana, as well as 17 experimental lines) and S. elaeagnifolium (silverleaf nightshade or bitter apple) were resistant to the rust isolates. Morphological descriptions and molecular phylogenetic data confirmed the identity of the rust on Digitaria as P. digitariae, herein reinstated as a species and closely related to P. penicillariae the pearl millet rust, also reinstated. Puccinia digitariae has a macrocyclic, heterecious life cycle in which teliospores overwinter on dormant D. eriantha plants. Aecia sporulate on species of Solanum during spring and early summer to provide inocula that infect new growth of Digitaria.


Assuntos
Basidiomycota , Solanum , Animais , Digitaria , Estágios do Ciclo de Vida , Filogenia , Doenças das Plantas/microbiologia , Plantas , Puccinia , África do Sul
2.
Front Plant Sci ; 12: 647347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497617

RESUMO

Studies on the selection of floral traits usually consider pollinators and sometimes herbivores. However, humans also exert selection on floral traits of ornamental plants. We compared the preferences of bumblebees (Bombus terrestris), thrips (Frankliniella occidentalis), and humans for flowers of snapdragon. From a cross of two species, Antirrhinum majus and Antirrhinum linkianum, we selected four Recombinant Inbred Lines (RILs). We characterised scent emission from whole flowers and stamens, pollen content and viability, trichome density, floral shape, size and colour of floral parts. We tested the preferences of bumblebees, thrips, and humans for whole flowers, floral scent bouquets, stamen scent, and individual scent compounds. Humans and bumblebees showed preferences for parental species, whereas thrips preferred RILs. Colour and floral scent, in combination with other floral traits, seem relevant phenotypes for all organisms. Remarkably, visual traits override scent cues for bumblebees, although, scent is an important trait when bumblebees cannot see the flowers, and methyl benzoate was identified as a key attractant for them. The evolutionary trajectory of flowers is the result of multiple floral traits interacting with different organisms with different habits and modes of interaction.

3.
Ann Bot ; 123(2): 311-325, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30099492

RESUMO

Background and Aims: Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods: The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results: Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions: Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades.


Assuntos
Apocynaceae/genética , Evolução Biológica , Insetos , Polinização/genética , Animais , Biodiversidade , Aves
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...